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The velocity of rise of distorted gas bubbles 
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The terminal velocity of rise of small, distorted gas bubbles in a liquid of small 
viscosity is calculated. Small viscosity means that the dimensionless group 
gp4/pT3, where g is the acceleration of gravity, p the viscosity, p the density and 
T the surface tension, is less than 10-8. It is assumed-and the numerical 
accuracy of the assumption is discussed-that the distorted bubbles are oblate 
ellipsoids of revolution. The drag coefficient is found by extending the theory 
given recently (Moore 1963) for the boundary layer on a spherical gas bubble. 
The results are in reasonable quantitative agreement with the experimental data. 

1. The distortion of a rising gas bubble 
In  a recent paper (Moore 1963, subsequently referred to as (1)) the author 

considered the nature of the flow set up by a spherical gas bubble rising steadily 
in an infinite viscous liquid. The analysis supported Levich’st (1949) contention 
that the ffow is essentially irrotational and that the drag couId be calculated 
from the dissipation in the irrotational flow. Rotational flow was shown to be 
confined to a thin boundary layer on the surface of the bubble which separated 
at  the rear stagnation point to form a thin rotational wake. The velocity field 
inside the boundary layer or wake differed from that of the irrotational flow by 
only O(R-i) ,  where R is the Reynolds number, and when allowance for the 
boundary layer and wake was made in calculating the dissipation it was found 
that the drag coefficient was given by 

48 3.21 ... 
cb = 

The first term on the right-hand side is Levich’s original result. 
It must be stressed that this picture of the flow field depends crucially on the 

assumption that the bubble surface cannot support any tangential stress. If the 
liquid contains surface active impurities, molecules of the impure substances can 
collect at the surface as the bubble rises, and the bubble behaves like a small 
solid particle. Its drag coefficient approaches that of a solid body (Haberman C% 

Morton 1953), it  has a wake like a solid body (Hartunian & Sears 1957) and its 
upward motion becomes unstable at  a critical Reynolds number (Hartunian & 
Sears 1957). Thus the theory to be presented can only be applied to pure liquids 

t Levich’s work is described in the English translation (Levich 1962). 
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and, in particular, it cannot be applied to ordinary water, which always contains 
significant amounts of impurity (Haberman & Morton 1953). 

This result was compared with the experimental data of Haberman & Morton 
(1953) and, while reasonable agreement was achieved, it was pointed out that 
st R = 0(102) gas bubbles, in all liquids for which data are available, show 
significant deviation from the spherical. Thus a really decisive test of the theory 
was not possible. The purpose of this paper is to extend the theory to distorted 
bubbles. 

In  (1) it  is shown that the normal stress at the bubble surface is equal to the 
pressure in the irrotational flow plus correction terms which are O(R-l)  and which 
arise from the normal viscous stress, the correction to the pressure due to the 
boundary layer and to gravity. Thus one has to determine a surface S such that 

P + w / w  + ( 1 / ~ 2 ) )  = Pgss (1.2) 

on 8, where p is the pressure in the irrotational flow past 8, (l/&) + ( l /R2) the 
total curvature of S, and T the surface tension. The fact that a t  large Reynolds 
numbers the shape is independent of viscous mechanics (though, of course, it  
depends on the viscosity since the terminal velocity does) greatly simplifies the 
problem. However, the resulting inviscid free-boundary problem is very difficult 
and only approximate solutions are available. If the distortion is small it  is 
a simple matter to show (Moore 1959) that the bubble is an oblate spheroid and 
that the ratio of the cross-stream axis, to the parallel axis, x, is given by 

where 

x = l+&W+O(W2),  

W = 2repU2/T 

is the Weber number, re is the radius of the sphere of the same volume as the 
bubble, p is the liquid density and U is the speed of rise. W is clearly the ratio of 
the dynamic pressure pU2 causing distortion to the surface tension pressure Tlr, 
available to resist it. 

If W is not small, the shape is unknown. It is likely, however, that for 
moderate values of W the bubble is still symmetric about a horizontal plane 
through its centre. The irrotational disturbance to a uniform stream caused by 
a body with fore and aft symmetry yields a symmetric pressure field on the body 
surface, while the total curvature is, of course, symmetric also. Moreover, this 
shape must be the one which continuously evolves from (1.3) as W increases. 
What is not certain, however, is that unsymmetric solutions do not exist to 
which the bubble could ‘jump’ at some critical W .  It is well known, since the 
work of Davies & Taylor (1950), that bubbles at  large W have a spherical-cap 
shape but since these bubbles are characterized by C, = O( 1) it  is more probable 
that this shape is the result of flow separation (Moore 1959; Rippin 1959). 

The rest of this paper will be concerned with bubbles whose Weber number is 
of order unity. For such bubbles it is a fair approximation (Siemes 1954; Saffman 
1956; Hartunian & Sears 1957) to assume that the bubbles are still oblate 
ellipsoidal. The boundary condition that the sum of the dynamic pressure and 
the surface tension pressure is constant on the bubble surface cannot, of course, 
be exactly satisfied. The simplest procedure is to satisfy the condition exactly 
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only at  the stagnation points and at  the intersection of the bubble surface and 
the horizontal plane of symmetry. The result is 

W ( X )  = ~ x - + ( x ~ + x -  2) [XZsec-lX- ( ~ 2 -  1)&]2(,y3- 1 ) ~ s .  (1.5) 

The function W ( X )  is plotted in figure 1. It is striking that the function has 
a maximum at x = 6.0, suggesting that there is a maximum Weber number of 
3.745 ... above which the symmetric shape is impossible. For a given Weber 
number less than 3.745 ... the more distorted shape is, probably, unstable and 
will not occur in practice. It is, of course, possible that this limitation 011 the 
Weber number for symmetric bubbles is a property of the approximation, which 
is, as will shortly be shown, rather poor if x > 2 .  It would be interesting to lmow 

I 
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FIGURE 1. The function W ( x ) .  

if, in the exact theory, symmetric solutions exist only below a critical Weber 
number. There is evidence from the drag curves of Haberman & Morton (1953) 
of a change of flow pattern at W + 4, but this could equally be due to instability. 
Both Saffman (1956) and Hartunian & Sears (1957) found that instabilities 
could occur in this Weber number range. 

The accuracy of (1.5) can be investigated numerically. It can be shown that 
(1.5) reduces to a form equivalent to (1.3) as x - f  1, but for larger values of x the 
quantity on the left-hand side of (1.2) will not be constant on the surface of the 
assumed ellipsoid and will vary from its common value at the stagnation points 
and equator. A convenient measure of the error is the fractional change in total 
curvature which would be necessary to make the left-hand side, evaluated at 
a general point of the bubble surface, equal to the stagnation and equatorial 
value. Calculation showed that for x = 2 the maximum change was lo%, for 
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x = 3, 30% and, for x = 4, 55%. Thus the approximation is reasonable a t  
x = 3, but is unreliable at x = 4. 

It is clearly essential to estimate the order of magnitude of the Reynolds 
number at which significant distortion starts. If it  should turn out that, for 
a particular liquid, significant distortion, which can arbitrarily be taken to be 
x 2 1-05,? should occur at low Reynolds numbers, then the considerations of 
this paper could not be applied : the bubbles would be extremely distorted when 
the Reynolds number was sufficiently large for boundary-layer theory to apply, 
and the approximation of ellipsoidal shape would be invalid. Now it follows 
from Levich’s result that 

U z gpr,2/9p (1.6) 

for spherical bubbles a t  large Reynolds numbers. Hence, using (1.3), 

where 

is a dimensionless group introduced by Haberman & Morton (1953) and also by 
Peebles & Garber (1953) (who call it  Gl). Thus 5 yo distortion occurs when 

R = 1.1M-r. (1.8) 

For thick liquids, such as oils, M is 0(10-2), while for a large class of ‘thin’ 
liquids, including water and many volatile organic liquids, M is O(lO-lo). For 
high ill liquids distortion sets in at  low Reynolds numbers (Taylor & Acrivos 
1964), while for low M liquids distortion is delayed until R = O(102). Thus the 
theory presented in subsequent sections will be restricted to low M liquids. 

In  $ 2 Levich’s result is extended to the ellipsoidal bubble. It is found that the 
drag coefficient rises very steeply with the axis ratio x. 

It has been seen that distortion will become important at  Reynolds numbers 
of about 100, and at these Reynolds numbers the correction to Levich’s result 
calculated in (1) and which is displayed in (1.1) cannot be neglected. To find this 
correction the structure of the boundary layer and wake for an ellipsoidal bubble 
must be determined. This involves lengthy algebra which is summarized in 
$9 3 and 4, but the principle of the calculation and its justification in terms of the 
viscous mechanics of the boundary layer are identical with those of the spherical 
case and the reader is referred to (1) for the relevant fluid-mechanical analysis. 

The dependence of the correction on the axis ratio is very strong and is in the 
direction of increasing the drag coefficient as the axis ratio is increased. Thus the 
leading terms of the Reynolds number expansion of C, both increase rapidly 
with the distortion, resulting in a minimum in the curve of C, versus R. 

In  $5  the experimental data on low M liquids is described and a detailed 
comparison of theory and experiment is attempted for three low M liquids. The 
agreement is quite reasonable in view of the approximations made in the shape. 

The calculations of $ 3  1 and 2 parallel an earlier calculation of Siemes (1954), 
who also considered the dissipation in the potential flow around a distorted 

t This will correspond to about a 6 %  increase in the drag and a 3 %  decrease in the 
speed of rise according to the theory of $0 2 and 3. 
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bubble, the bubble being approximately represented by an oblate spheroid. 
There are, however, small numerical differences due to a minor algebraic error 
in Siemes's calculation of the dissipation, so that it was felt to be worth while 
to repeat the calculation in detail. Siemes did not discuss the boundary layer, 
but his results are qualitatively similar and, in particular, he also finds a minimum 
in the curve of drag coefficient against Reynolds number. 

2. A first approximation to the drag 
Adopt rectangular axes O X ,  0 Y, 0Z with 0 at the centre of the bubble and 08 

parallel to and in the same sense as the undisturbed flow. 
bubble is represented by the equation 

x2 + y2 22 +-= 1, 
c2 a2 

where c 3 a. The discussion of the potential flow past 
revolution is best carried out in orthogonal co-ordinates 

X = K[(1+ a2)(l -p2)]k COS $, 
y = ~[(l+a2)(1-P2)]"in$, 

2 = KEp.  

Then the line elements h,, h,, h,, defined by 

Then the surface of the 

(2.1) 

this oblate ellipsoid of 
(4 p, $) defined by 

One can readily verify that the surface a = a, coincides with (2.1) provided that 

K(  1 + = C, Ka,  = a. (2.4) 
It is most convenient to work in a frame in which the bubble is a t  rest. Then if 
the speed of the undisturbed stream is U the irrotational velocity field is grad 3 
where the velocity potential $ is given by 

- 4 = uK(CLp +pp( 1 - a Cot-' a)}, (2 .5 )  

and where p(ao) = [cot-1 a, - a,/( 1 + at)]-'. (2.6) 

This result is derived by Lamb (1932, p. 144). As in (1)) an overbar denotes the 
irrotational flow past the bubble. 

The dissipation 6 in this potential flow must now be calculated. The dissipa- 
tion can be expressed as an integral, over the body surface S, of the normal 
gradient of the square of the fluid speed (Lamb 1932, p. 581)) but a more con- 
venient result, which is easily established, is that 

G'=-"p Y jsil,e,l,dS, (2.7) 

where ii is the potential flow, E ,  is the rate of strain tensor 

gaiiilaxj + azjpxi) 
and 1 is the normal to  S drawn into the fluid. 

48 Fluid Mech. 23 
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This result has a simple physical significance. Suppose that S is made up of 
a large number of small rollers and that these rollers are adjusted so that they 
exert a force - 2pEij li on the fluid, where ?Zj is the irrotational flow past S. Then 
Zj is clearly the exact solution of the full Navier-Stokes equations and (2.7) 
emerges as the condition that all the work done on the fluid by the rollers is 
dissipated by viscosity. 

In the present case this surface integral becomes 

Now 

and 

so that, recalling that ija = 0 on a = a. for all p, one finds 

as = 27fK2( 1 + a;)* (a; + p”* dp. 

Substituting and performing the integration one finds that 

This calculation was attempted by Siemes (1954) but, unfortunately, a minor 
algebraic slip was made. In  fact, the numerical effect of this error is rather small 
and, in the range of bubble shapes examined by Siemes, amounts only to a few 
per cent. 

The drag on the bubble can now be found and on introducing a drag coefficient 
CD defined by 

Drag = &pU%r;C,,I (2.10) 

one finds 
where 

R = 2r,Up/p 
(x is the axis ratio c/a). 

(2.13) 

t The velocity components in the oblate-ellipsoidal co-ordinates are written (qa, q ~ ,  0). 
$ It should be noted that 7rri is not the projected area on a plane perpendicular to the 

flow direction as is strictly required by aerodynamic usage. The reason is that re is what is 
measured experimentally-the actual projected area involves a difficult measurement of 
shape, so that most experimental workers adhere to  the definition (2.10). 
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FIGURE 2.  The function Ct(x). 

Figure 2 shows how G ( x )  varies with x. For x = 1, G' = 1, corresponding to 
the spherical bubble. As x increases G ( x )  increases rapidly, showing that a bubble 
of given volume will experience an increased drag, and will thus rise more slowly, 
due to the distortion of its surface. 

This result is asymptotically correct as R --f 00. For liquids in which significant 
distortion does not occur until very large Reynolds numbers, no further calcula- 
tions are necessary since, for such liquids, the results for the spherical bubble can 
be used for smaller values of R. One can characterize such liquids by finding the 
order of magnitude of M for which the boundary-layer correction to (2.11) 
becomes negligible while the bubble is still spherical. The analysis of $ 1  shows 
that the condition is simply 

2 M h  < 1.  (2.14) 

As far as the author is aware, there are no liquids at all for which (2.14) is 
strictly satisfied! However, there are some liquidsf with M = 0(10-12) (so that 
2 M A  is about 0.13) for which (2.11) and (1.1) would provide a fair approximation 
to the drag coefficient over a whole range of large Reynolds numbers-unfortu- 
nately, there are not very many experimental data on these very low M liquids.$ 

Thus the boundary-layer correction to (2.11) must be sought and in the next 
two sections of this paper the calculations are described. 

t Their existence was pointed out to the author by Dr J. F. Harper and a list of low M 
liquids he compiled is given in the appendix. 

$ Peebles & Garber (1953) give a few measurements on acetone. 
48-2 



756 D. W. Moore 

3. The boundary-layer equations and their solutions 
The irrotational solution 3 satisfies all the boundary conditions of the problem 

except the vanishing of the tangential stress at  the surface of the bubble. As 
was argued in detail in (1) this implies that there will, at  high Reynolds numbers, 
be a thin boundary layer at  the bubble surface in which the velocity field changes 
by O(R-4) whilst the stress field changes by O(R-l)  to annul to O(R-l) surface 
stress corresponding to the potential solution. The purpose of this section is to 
derive the equations governing this boundary layer. 

If  u' is the actual velocity field and p' the pressure, the steady-state Navier- 
Stokes equations are 

- u' A curl u' = - V(p ' /p  + B u ' ~ )  + vV2u', div u' = 0. 13.1) 

u' = G + U ,  p' = p + p ,  ( 3 . 2 )  

(3.3) 

One can now express (3.3) in terms of the co-ordinates a, ,8 and make the usual 
boundary-layer approximations symbolized by F/aa % and qz 4 qI. The 
a-component of the momentum equation shows that the pressure perturbation 
is only O(R-l)  in the boundary layer so that the p component of the momentum 

If one introduces the substitutions 

into (3.1) and neglects quadratic terms in u one finds that 

- ii A curl u = - V(p /p  + fi . u) + uV2u, div u = 0. 

where the zero attached to the line elements indicates that they are to be evalu- 
ated a t  a = a,. One recalls that q ,  = O(a - a,) in the boundary layer so that the 
two terms on the left-hand side of (3.4) are of the same order of magnitude. 

The boundary conditions are 

qp = 0 on ,8= - 1 ,  all a, (3.5) 

qp+o as a-+co, -1< /3<1 ,  ( 3 4  

1 < p <  1. (3.7) 

The last condition insists that the tangential surface stress is zero. 
The process leading to (3.4) and, in particular, the orders of magnitude of the 

non-linear terms were examined in (1) for the special case of the spherical bubble. 
There seems no reason to anticipate any difference in the behaviour of the 
neglected terms in the present case, so that the argument given in (1) to justify 
the process will not be repeated. 

If the explicit expressions for qa. qI and Zap are introduced one finds, after some 
algebra, that the boundary-layer equation is 
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with boundary conditions 

u = 0 on p = -1, ally‘, (3.9) 

~ L - % O  as y‘+co, -1  p < + 1 .  (3.10) 

(3.11) 

where for convenience dimensionless quantities are introduced according to the 
scheme A 

I qp = u su, y‘ = (a  - a,) s-1, 

where 
(3.12) 

y‘ is a dimensionless boundary-layer normal co-ordinate. The problem just 
posed can be solved by transforming (3.8) into the heat-conduction equation. 
The transformations 

(3.13) 
s = +(p+1)2(2-p) ,  Y= (l-PZ)y’, 

U ( P ,  y’) = [(a; +p”/( 1 - p714 V ( S ,  1’) 

accomplish this and one is left with the problem 

aqax = aZvpy2, (3.14) 

v = O  on X = 0 ,  (3.15) 

a + O  as IT-+co, X > O ,  (3.16) 

&/aY = 3ai/{a;+/32(X)}2 = S(S) ,  say, 011 Y = 0, (3.17) 

whose solution, 

is immediate (C’arslaw & Jaeger 1959, p. 295). This gives finally 

(3.18) 

(3.19) 

One must examine how u(p, y’) behaves as /3+ - 1 and /3+ + 1, that is to say as 
the front and rear stagnation points are approached. If p-+ - 1 + 0, (3.13) shows 
that 

Now from (3.10) v = O ( B )  as X - ~ O + ,  

so that u = O ( ~ f )  as Y + o + .  

Thus u is regular near the front stagnation point and vanishes on the axis of 
symmetry. However, as /3+ 1 - 0, X+# and so v(5, Y) remains finite. Thus 
(3.13) shows that u(p, Y)+m so that, just as for the spherical bubble, the 
boundary-layer solut,ion has a singularity a t  the rear stagnation point. 
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Clearly the boundary-layer solution fails near the rear stagnation point and 
there will be a region in which the flow separates from the bubble and joins on to 
the wake. The nature of this separation in the spherical case was examined in (1) 
and it was concluded that ( A )  viscous forces are negligible in this region-large 
inertia forces are introduced by the rapid turning while, at  the same time, the 
viscous stresses are reduced by the thickening of the boundary layer; (B)  the 
total velocity field is still only slightly perturbed from the irrotational velocity 
field u. ( A )  and ( B )  mean that the vorticity, w ,  satisfies 

w/m = B($L (3.20) 

where, as in (l), sn denotes the distance from the axis. Also (C) there is a region 
of overlap in which the boundary-layer solution is still valid but viscous forces 
can be neglected. (C) means that B($) can be determined by matching. 

The structure of the wake and hence the contribution of the wake to the 
viscous dissipation will depend on B($), so that the next step is to determine 
this function. 

4. The dissipation 
The vorticity in the boundary layer is 

1 34, W = - - -  
hy an ’ 

and in terms of the transformed variables this is, for /3+ 1 - , 

W = ( O / K )  (1 f O $ ) g  (2?))”V/ar, 

where 7 = 1 -/3, and it has been assumed that, 7 6 1. To the same order of 
approximation 

”L = K (  1 +a:)+ (29)*,  

and if one assumes that 1 - /3 and CL -ao are small one finds that 
- 
$ = s ~ a ,  O K ~ Y  = Y/2f ,  say. ( 4 4  

One is now in a position to see that (4.1) confirms that w / m  = B($) ,  and that 

The structure of the wake behind a spherical gas bubble was discussed in some 
detail in (1).  It was shown that the wake was of breadth O(R-*) and that the 
perturbation of the irrotational flow was 0fR-h) in the wake. Viscous forces 
were small and produced no significant modification to the velocity profile until 
the distance downstream from the bubble was O(R4). This last remark is 
important since it means that there is a region where the wake is essentially 
a parallel flow whilst still being determined by inviscid mechanics. 
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Thus, in this region, the velocity is easily determined. The vorticity in the 
wake is aq,/am, where q, is the axial velocity component and p = +Urn2 so that 
(3 .20)  gives 

and, since qz -+ 0 as m 4 00, qz is completely determined. 
One is now in a position to calculate the dissipation in the wake. However, 

(4 .4)  will first be used to find the momentum defect associated with the wake. 
The comparison of the drag found in this way with that obtained in $ 2  will 
provide a partial check on the validity of (3.18).  

The pressure is negligible in the wake so that the analysis of $ 4  of (1) shows 
that the drag D is given by 

aq,/am = mB(gUm2), (4 .4 )  

D = -pU /om 2nmq, am. 

The distance from the axis m can be replaced by 3 and after a partial integration 

so that, using (4 .4) ,  

and on inverting the order of integration and carrying out one integration, 

If  one substitutes for X(7) from (3 .17)  and changes the variables, one has 

and it is now a simple matter to substitute for 7? and f using (3.12) and (4 .2)  
and confirm that D agrees with the value given in $2.  

The dissipation associated with the boundary layer and with the wake may 
now be calculated. The contribution from the boundary layer is expressed, as 
in (l), by a volume integral and a surface integral, whilst the contribution from 
the wake is reduced to a surface integral over a cross-section of the wake. 

Tedious but straightforward manipulations now show that the net dissipation 
from the boundary layer and wake is @, where 

@ = p0%(1 +a;, &f[I1(a0) - 12cx'12(a0) + $p2I3(aO)/(a;+ 1 ) 2 ] ,  (4.5) 

l and 
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The integrals 11, I,, and I ,  arise from the volume integral through the boundary 
layer, the surface integral over the bubble surface and the surface integral over 
a cross-section of the wake, respectively. They cannot usefully be reduced 
because of the complexity of X ( T ) .  

One can finallv write 

(4.7) 

where H ( x )  has to be obtained by numerical integration, although one can 
verify analytically that 

H ( ~ ) + - 4 4 2 ( 6 4 3 + 5 4 2 -  14)/5& as x+l ,  (4.8) 

in agreement with the result for a spherical bubble. The function H ( x )  is given 
in table 1 and it will be observed that it is rapidly increasing. 

In $5, (4.7) is used to calculate the velocity of rise of gas bubbles in three 
low M liquids for which data are available. 

x 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2- 1 
2.2 
2.3 
2.4 
2.5 

H ( X )  
- 2.21 1 
- 2'129 
- 2.025 
- 1.899 
- 1'751 
- 1.583 
- 1.394 
- 1.186 
- 0.959 
- 0.714 
- 0.450 
- 0.168 
+0.131 
+ 0.448 
+ 0-781 
+ 1.131 

TABLE 1 

X 
2.6 
2.7 
2,8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4-0 

H(X)  
+ 1.499 
+ 1.884 
+ 2.286 
+ 2.684 
+3*112 
+ 3.555 
+ 4.013 
+ 4.484 
+ 4-971 
+ 5.472 
+ 5.987 
+ 6,517 
+ 7.061 
+ 7.618 
+ 8.189 

5. Comparison with experiment 
There have been two comprehensive series of experiments on the rise of small 

gas bubbles, those performed by Haberman & Morton (1953) and Peebles & 
Garber (1953). The qualitative conclusions of these workers are in agreement, 
but there are some puzzling quantitative differences. 

In both cases, a plot of C,(R) (figures 3,4) for all the liquids used was given 
and the results were qualitatively similar. C,(R) is a universal curve for all 
low M liquids when R is O(lO), but for larger R the curves start to climb away 
from this universal curve and then, after a minimum, rise very steeply. The 
drag curve would be a universal one if the bubbles remained spherical and it is 
plausible to invoke distortion to account for the departures. It is consistent with 
this interpretation that, the smaller the value of M ,  the larger the R a t  which 
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departures from the universal curve become apparent, since in $ 1  it  was shown 
that significant distortion should be apparent at  a Reynolds number of about 
M-4. The precise effect of the distortion will be discussed later. 

Haberman &Morton found that, for verylarge R, C,(R) was auniversal constant 
of value 2.6. Peebles & Garber did not proceed to such high Reynolds numbers 

Region of ellipsoidal buhbles lies between 

Spherical cap bubbles bubbles 
1.45 x 

Turpentine, hi = 231 x 
137; ethyl alcohol-water, hi = 1.17 x lo-' 

~.- 

W G r  (filtered), 
M = 0.25 x lo-'" 

1 10 10' 103 10' 
Reynolds number 

FIGURE 3. C,(R) for a number of liquids according t,o Haberman & Morton (1953). 

0 Ethyl ether 
0 Nitrobenzene 

6 Acetic acid 

0 Ethyl acetate 

* N-Butanol 
Water 

0 Cottonseed oil 

Y: Pyridene 

7- 
_~__-  .. ~~ 102 

t Benzine 4 Aniline 
6 400% (wt.) acetic acid-water 
@ 70.0% (wt.) acetic acid-water 
0 5 3 %  (wt.) ethyl acetate-cottonseed oil 
0 16.4% (wt.) ethyl acetate-cottonseed oil 
4 27.0% (wt.) ethyl acetate-cottonseed oil 
D 31.1 96 (wt.) ethyl acetate-cottonseed oil 
6 40.9% (wt.) ethyl acetate-cottonseed oil 

b . 0  
* 
5 

8 

.w 

I 1 I -I I 1 1.1 1 ,I-. 

100 10' 102 103 I 04 

Reynolds number 2Rb U,p , /p  

FIGURE 4. C,(R) for a number of liquids according to  Peebles & Garber (1953). 
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and did not find this tendency. The minimum in the drag coefficient, which occurs 
close to the point of departure from the universal curve, and the transition to 
the asymptotic value for large bubbles were found by Haberman & Morton to 
occur at  a Weber number very close to 2 for all the low M liquids they examined. 
Peebles & Garber did not consider C,( W )  but claimed that the departure from 
the universal curve was at  a Reynolds number given by 

(5.1) 

C, = A ( R ) / R ,  (5.2) 

C, = $MR4 W-3,  (5.3) 

R M ) -  W ,  (5.4) 

R = 4.03M-0'214. 

However, if we assume that the universal curve is 

where A (R) is slowly varying, the relation 

which expresses the equality of the drag force and the buoyancy in the steady 
state, gives 

so that the results are in qualitative agreement. 
Unfortunately, there is no agreement as to the actual values of C,. Peebles 

& Garber give values which are about twice those found by Haberman & Morton 
and there does not appear to be any difference of definition or procedure to 
account for the discrepancy. It is not clear from their paper that Peebles & 
Garber made allowance for the change in bubble size under the variation of 
hydrostatic pressure in their test column but, in any case, the effect on the drag 
coefficient would be small. The only liquid common to the two series was water 
but it is hard to believe that there was a systematic difference between the two 
groups of liquids. It is well known that small amounts of surface active impurity 
can render the surface of the bubble effectively solid and thus increase the drag 
coefficient. However, although this would account for the larger values of C, 
obtained by Peebles & Garber, it would not account for the internal consistency 
of their data. Clearly, some further work is desirable. 

Both pairs of workers fouiid that, for a given liquid, there was as the volume 
was increased a tendency for the bubble to rise in a helical rather than a recti- 
linear path. This will eventually affect the rate of rise (Saffman 1956), but it will 
be small for the range of bubble sizes considered here and has been ignored in 
the present theory. 

The present theory satisfactorily accounts for the general features of the 
dependence of C, on R and it is in fair quantitative agreement with Haberman 
& Morton's data. 

It is not easy to calculate CD for a prescribed value of R and the simplest plan 
is to regard the axis ratio x as the independent variable. W ( x )  is given by (1.5) and 
(4 .7)  and (5.1) enable R(x) to be determined and thus C&) can be found. x = 4 
was the largest value used. It is clear from the discussion of 8 1 that the approxi- 
mation to the true shape by an oblate ellipsoid is very dubious for x > 2, but it 
will appear from the detailed comparison that the effect of this crude approxima- 
tion on the drag coefficient is less than might have been anticipated. 
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The variation of C, with R for a range of values of M is shown in figure 5. It 
is surprising that the rapid rise of C, after its minimum, which occurs at  W + 1-8 
in the theory, is predicted by a laminar theory. Such a marked rise in drag 
normally suggests a change in flow regime and, indeed, there is direct evidence 
that flow separation eventually takes place. The flow around spherical cap 
bubbles is certainly separated (Davies & Taylor 1950) while there is also visual 
evidence that the bubble surface itself becomes unstable at  large Weber numbers 
(Hartunian & Sears 1957), which would, of course, lead t o  a drastic change in the 
flow. These effects are not denied, but the present theory suggests that care must 
be used in locating their onset from the drag curves. 

0 0  1 / 103 104 
10 102 

R 

k'IGURE 5. predicted C,(R) for M = 10-lo, 1O-l2, 10-14. The right-hand end of 
the CIII'VOS corresponds to  an axis ratio x equal to  4. 

Haberman & Morton (1953) give detailed plots of U as a function of re for a 
number of liquids. They display all their experimental points, so that one can 
easily estimate the experimental scatter. For this reason, it is a more useful 
test of the theory to compare its predictions of U(r,,) rather than its predictions 
of C,(R) or C,(W), for which Haberman & Morton give only smoothed curves. 

A comparison with their experimental results for the low M liquids Varsol, 
turpentine and methyl alcohol is shown in figures 6-8. 

The agreement is fair although the maximum velocity of rise is systematically 
too low. The prediction of the radius at  which the velocity of rise has a maximum 
is too large, the discrepancy being most noticeable for methyl alcohol. 

The point on the curves corresponding to x = 2 is marked A and the curves 
terminate at x = 4, so that an idea can be formed of the amount of distortion 
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FIGTJRE 6.  Comparison of theory and experiment for Varsol; A1 = 4.45 x 10-lo. (Haberman 
& Morton give 2M = 4.3 x 10-lo and there were other small numerical discrepancies in their 
data on this liquid. The above value is based on the values /I = 8 . 5 ~  lo3, p = 0.782, 
T = 24-5, all in c.g.s. units, which the authors give in their paper.) ---- , Theory; 
_ _  , smoothed experimental curve. The three symbols denote MS in different tanks. 

'0.01 0.02 0.04 0.06 0.08 0.1 0.2 0 4  0.6 0.8 1.0 2.0 4.0 

Equivalent radius (cm) 

FIGURE 7. Comparison of theory and experiment for methyl alcohol; 
M = 0.89 x lo-*". ----, Theory; - , smoothed experimental curve. 

predicted. Clearly the decreasing portion of the curve is associated with a rapid 
increase of distortion with re, resulting in a drag force which increases with re 
faster than T:. It is surprising that the agreement between experiment and 
theory remains fair for x > 2. Unless this is fortuitous, it  may mean that the 
drag coefficient is not very sensitive to the shape of the bubble once the axis ratio 
is fixed, so that the crude approximation to the shape does not matter. 
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Appendix 
The following list of low M liquids was prepared by Dr J. Harper from the 

Handbook of Physics and Chemistry. Data refer t o  20" C. The values are approxi- 
mate, due to  uncertainties in T and ,u. 

M x 10l2 M x 1012 

Acetaldehyde 
Acetone 
Acetonitrile 
Benzene 
Bromine 
Carbon disulphide 
Ether 
Ethyl acetate 
Ethyl bromide 
Ethyl formate 

3.0 

8.4 
11 

84 
45 
4.0 
8.3 

34 
13 
22 

Ethyl iodide 
n-Hexane 
Hydrazine 
Isopentane 
Mercury 
Methyl acetate 
Methyl alcoholt 
Methyl iodide 
Methylene chloride 
n-Octane 

24 
27 
11 
13 

15 
130 
13 
14 

120 

0-037 

t Haberman & Morton used methyl alcohol at 30°C,  which lowers its viscosity, 
hence M .  


